Received 23 September 2011

Accepted 27 September 2011

Acta Crystallographica Section B Structural Science

ISSN 0108-7681

Marta Kasunič,^a Anton Meden,^a Srečo D. Škapin,^b Danilo Suvorov^b and Amalija Golobič^a*

^aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, Ljubljana 1000, Slovenia, and ^bJožef Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia

Correspondence e-mail: amalija.golobic@fkkt.uni-lj.si

Structure of $LaTi_2Al_9O_{19}$ and reanalysis of the crystal structure of $La_3Ti_5Al_{15}O_{37}$

The non-perovskite compound LaTi₂Al₉O₁₉ was synthesized and structurally characterized by conventional X-ray powder diffraction and shown to be isostructural with SrTi₃Al₈O₁₉, as confirmed by bond-valence sum calculations. The dielectric properties of LaTi₂Al₉O₁₉ at 1 MHz were measured. The crystal structure of La₃Ti₅Al₁₅O₃₇, which is referred to as the most complex structure solved *ab initio* from X-ray powder diffraction (XRPD) to date, is shown to be incorrect.

1. Introduction

In order to stabilize $La_{2/3}TiO_3$ and consequently to prepare new compounds with promising microwave and dielectric properties applicable in electronics, the ternary system La_2O_3 – TiO_2 – Al_2O_3 has been studied extensively (Škapin *et al.*, 1993; Suvorov *et al.*, 1998). The crystal structures of several ternary oxides have been determined:

(i) A-site deficient perovskites including $La_{0.68}Al_{0.05}Ti_{0.95}O_3$ (Ali *et al.*, 2006), $La_{0.7}Al_{0.1}Ti_{0.9}O_3$ and $La_{0.717}Al_{0.15}Ti_{0.85}O_3$ (Yoshioka, 1994);

(ii) a perovskite with vacancies distributed among all sites, $La_{0.9}Al_{0.465}Ti_{0.465}O_{2.9}$ (Slater & Irvine, 1999);

(iii) $La_5AlTi_3O_{15}$ (Kuang *et al.*, 2006) as an example of a *B*-deficient hexagonal perovskite.

The only non-perovskite structure known is $La_3Ti_5Al_{15}O_{37}$ and with 60 atoms in the asymmetric unit it is one of the largest structures determined from powder diffraction data and solved by *ab initio* methods (Morris *et al.*, 1994).

Here we report the crystal structure and dielectric properties of another non-perovskite in the La₂O₃–TiO₂–Al₂O₃ system with the formula LaTi₂Al₉O₁₉, whose synthesis and unit-cell parameters were described by Morgan (1984). The Xray powder diffraction pattern of LaTi₂Al₉O₁₉ is in the PDF-2 database (PDF card No. 000-037-1233), but after the structural characterization of La₃Ti₅Al₁₅O₃₇ (Morris *et al.*, 1994) PDF card 37-1233 was misnamed as La₃Ti₅Al₁₅O₃₇ owing to the similarity of powder patterns and preparation procedures (*PDF*-2; ICDD, 2009*a*,*b*). In the latest database LaTi₂Al₉O₁₉ was restored. The aim of this study is to remove the ambiguity surrounding the composition and structure of these nonperovskite lanthanum aluminotitanates.

2. Experimental

Single-phase LaTi₂Al₉O₁₉ ceramic was prepared according to Morgan (1984) by mixing high-purity La₂O₃ (Alfa Aesar, 99.99%) with Ti isopropoxide (Sigma-Aldrich, 97%) in 2propanol, followed by the addition of an aqueous solution of Al(NO₃)₃ (Johnson Matthey) in an agate mortar. The dried

© 2011 International Union of Crystallography Printed in Singapore – all rights reserved

Figure 1

Rietveld plot for $LaTi_2Al_9O_{19}$ (experimental = blue, calculated = red, difference profile = grey). Lower vertical bars represent reflection positions. This figure is in colour in the electronic version of this paper.

 Table 1

 Experimental details.

Crystal data	
Chemical formula	Al ₉ LaO ₁₉ Ti ₂
M _r	781.47
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	22.59355 (18), 10.99919 (9), 9.72968 (7)
β (°)	98.5634 (5)
$V(Å^3)$	2390.97 (3)
Z	8
Radiation type	Cu $K\alpha_1$, $\lambda = 1.54059$ Å
$\mu (mm^{-1})$	46.126
Specimen shape and colour	Irregular pale yellow powder
Data collection	
Diffractometer	PANalytical X'Pert PRO MPD
Specimen mounting	Flat plate
Data collection mode	Reflection
Scan method	Step
2θ values (°)	$2\theta_{\min} = 5, 2\theta_{\max} = 120, 2\theta_{\text{step}} = 0.033$
Refinement	
R factors and goodness of fit	$R_{\rm p} = 0.049, R_{\rm wp} = 0.067, R_{\rm exp} = 0.034,$ $R_{\rm Bragg} = 0.031, \chi^2 = 4.004$
No. of data points	3485
No. of parameters	109
No. of restraints	0

Computer programs: TOPAS-Academic (Coelho, 2007), ATOMS (Dowty, 2005).

mixture was uniaxially pelletized at ~ 100 MPa and fired with a heating rate of 5 K min⁻¹ to 873 K. Subsequently, the sintering temperature was increased to 1723 K (1 K min⁻¹) and held for 10 h before cooling to ambient temperature in the furnace. For electrical measurements thin tablets were cut from the pellet. Silver paste was applied to both sides of the tablets and bonded at 823 K. The capacitance and dielectric losses were measured at 1 MHz using an Agilent 4284A LCR meter from 293 to 363 K. Polished and thermally etched cross sections were analyzed by using a field-emission scanning electron microscope (FESEM; SUPRA 35VP Carl Zeiss), equipped with an energy-dispersive spectrometer (EDXS; Inca 400, Oxford Instruments). Xray powder diffraction data were collected using a PANalytical X'Pert PRO MPD diffractometer with θ -2 θ reflection geometry and primary side Johansson type monochromator. The crystal data, collection conditions and refinement parameters are presented in Table 1.

The starting model for Rietveld refinement used the unit-cell parameters and atomic coordinates of isostructural C2/c SrAl₈Ti₃O₁₉ (Strunk & Mueller-Buschbaum, 1993) with lanthanum entering the strontium site and two titanium replaced by aluminium. The first Ti/ Al replacement was made at the only 8*f* site in the Sr compound which was statistically occupied by

both species, *i.e.* Al9 and Ti4. The second titanium site replaced by aluminium is Ti3 which is reasonable from two points of view. First, this is the only atom that occupies the special position (4*e*) and consequently partial occupancy and/ or disorder is not required to obtain agreement with the nominal composition. Second, within 4 Å of this site there is the largest number of Sr^{2+} ions that when replaced by La^{3+} can be effectively charge-balanced by lower valent Al^{3+} . Several other substitutions to change the Al:Ti ratio from 8:3 to 9:2 were tested, but resulted in significantly poorer fits between the calculated and observed powder patterns and non-physical bond-valence sums.

Rietveld refinement was performed using the *TOPAS-Academic* program suite (Coelho, 2007). In the first refinement cycles the background was modelled by a third-order polynomial, while the zero error and scale factor were also refined. In the next steps, the cell parameters, atomic coordinates and a global isotropic displacement parameter were released. The Bragg reflections were modelled using a Thompson-Cox-Hastings pseudo-Voigt function (Thompson *et al.*, 1987). Altogether, 109 independent parameters were refined. The final match between observed and calculated profiles between 5–70° 2θ is shown in Fig. 1, and Rietveld plots between 5–120 and 70–120° 2θ have been deposited.¹

3. Results and discussion

3.1. Crystal structure of LaTi₂Al₉O₁₉

The fundamental units of the title compound are AlO_6 and TiO_6 octahedra which are connected through lanthanum ions and AlO_4 tetrahedra as in $SrAl_8Ti_3O_{19}$ (Strunk & Mueller-Buschbaum, 1993). The octahedral motif is quite complicated, and most obvious when viewed as (100) planes separated by

¹ Supplementary data for this paper are available from the IUCr electronic archives (Reference: HW5019). Services for accessing these data are described at the back of the journal.

around 3 Å. In the unit cell, ten layers stack along [100] (Fig. 2). The layers are of three types: layer A (at $x \simeq 0$ and $x \simeq 0.5$), layer B (at $x \simeq 0.1$, 0.4, 0.6 and 0.9) and layer C (at $x \simeq 0.2$, 0.3, 0.7 and 0.8; Figs. 3–5).

The type A layer contains $[Al_2O_{10}]$ pairs of edge-sharing octahedra. Four free vertices of the first octahedron from each pair are connected to four AlO_4 tetrahedra within the layer, and four free vertices of the second octahedron are shared with four lanthanum ions, either side of the layer (*i.e.* two from each of the neighbouring *B* layers).

ABCCBABCCBA

Figure 2

The stacking of octahedral layers in $LaTi_2Al_9O_{19}$ (green = AlO_6 octahedra, red = TiO_6 octahedra, grey = AlO_4 tetrahedra, yellow circles = La^{3+} ions). This figure is in colour in the electronic version of this paper.

Representation of layer *B* at $x \simeq 0.1$ (green = AlO₆ octahedra, green hatched = TiO₆ octahedra, blue = AlO₆ octahedra that connect serrated units, yellow = La³⁺ ions as described in text). This figure is in colour in the electronic version of this paper.

Figure 3

Representation of layer A at $x \simeq 0$ with La³⁺ ions from neighbouring B layers (green = AlO₆ octahedra, grey = AlO₄ tetrahedra, yellow circles = La³⁺ ions). This figure is in colour in the electronic version of this paper.

Representation of layer C at $x \simeq 0.2$ (green = AlO₆ octahedra, green hatched = TiO₆ octahedra, blue = AlO₆ octahedra that connect serrated units, grey = AlO₄ tetrahedra as described in text). This figure is in colour in the electronic version of this paper.

Table 2

Problematic structural segments in $La_3Ti_5Al_{15}O_{37}$ (CN = coordination number, M = metal).

Atom A1	Atom A2	Distance A1–A2	CN of A1
La1 ⁱ	Al14 ⁱⁱ	3.08 (3)	15(12 O + 3 M)
	Ti2 ⁱ	3.15 (6)	· · · · ·
	Al10 ⁱⁱⁱ	3.18 (5)	
Ti1 ⁱ	Al4 ⁱ	2.27 (6)	10 (6 O + 4 M)
	Al6 ⁱ	2.29 (6)	· · · · ·
	Al1 ⁱ	2.37 (6)	
	Al2 ⁱⁱ	2.46 (5)	
Ti4 ⁱ	Al2 ⁱ	2.24 (10)	7 (6 O + 1 M)
Ti5 ⁱ	Al6 ⁱ	2.29 (10)	8(6 O + 2 M)
	Al1 ⁱ	2.48 (10)	· · · · ·
Al5 ⁱ	Al4 ⁱ	2.37 (5)	7 (6 O + 1 M)
Al13 ⁱ	Al15 ⁱ	2.38 (7)	7(6 O + 1 M)
O3 ⁱ	Ti1 ⁱ	1.67 (4)	6
	Ti4 ⁱⁱ	2.05 (9)	
	Ti5 ⁱ	1.89 (7)	
	Al1 ⁱ	1.86 (6)	
	Al2 ⁱⁱ	1.97 (5)	
	Al6 ⁱ	1.76 (6)	

Symmetry codes: (i) x, y, z; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

which only include AlO_4 tetrahedra. The sequence of layers is ... *BCCBABCCB*... (Fig. 2) linked by edge- and vertexsharing octahedra between A-B and C-C layers, whereas the connections between the *B* and *C* layers is only through corner connection. Face-sharing octahedra are absent and AlO_4 tetrahedra connect with other fragments through vertices, leading to a 12-fold coordination of lanthanum.

3.2. Dielectric properties of LaTi₂Al₉O₁₉

The permittivity of LaTi₂Al₉O₁₉, measured at 1 MHz is slightly lower ($\epsilon = 17.4$) than observed by Zhang & McGinn (2006) who found $\epsilon = 21$ by near-field scanning microwave microscopy. A relatively low dielectric constant is expected owing to the significant proportion of aluminium, as higher permittivities require MO_6 octahedra, where the metal valence is 4 or higher (Herbert, 1985). However, the electric loss (tan $\delta = 6 \times 10^{-4}$) is quite low and therefore promising for use in electronic components. The temperature coefficient (τ_k) measured from 293 to 363 K is moderate ($\tau_k =$ 140 p.p.m. K⁻¹).

3.3. Reassessment of the La₃Ti₅Al₁₅O₃₇ crystal structure

In view of the foregoing analysis we have re-examined the *ab initio* structure solution reported as $La_3Ti_5Al_{15}O_{37}$ and found a number of inconsistencies (Morris *et al.*, 1994).

3.3.1. Composition problem. The present study, as well as the original synthesis (Morgan, 1984) and the later work of Morris *et al.* (1994) used the same synthesis procedure with the molar ratio La:Ti:Al = 1:2:9 that leads to a single-phase product with practically the same powder pattern. On that basis, Morgan (1984) formulated the product as $LaTi_2Al_9O_{19}$, confirmed here by elemental analysis. Additionally, secondary electron images/backscattered electron images (SEI/BSI) microscopy (Fig. 6) confirmed the phase purity. However, Morris *et al.* (1994) proposed the significantly different

Table 3

Bond-valence	sums ((BVS)	for	metal	ions	and	metal-oxyg	en	distance
ranges for the	title co	mpour	nd (CN = c	oordi	inatio	on number).		

Metal ion	CN	Distance ranges M -O (Å)	(Å) BVS	
La1	12	2.513 (21)-3.011 (17)	2.660	
Ti1	6	1.84 (2)-2.174 (15)	4.499	
Ti2	6	1.752 (22)-2.13 (2)	4.222	
Al1	4	1.715 (17)-1.79 (3)	2.711	
Al2	6	1.78 (3)-2.01 (3)	2.679	
Al3	4	1.72 (2)-1.80 (2)	2.648	
Al4	6	1.86 (3)-1.923 (15)	2.870	
Al5	6	1.753 (21)-2.03 (3)	3.190	
Al6	6	1.83 (3)-2.14 (3)	2.624	
Al7	6	1.87 (3)-2.03 (3)	2.450	
Al8	6	1.800 (18)-1.98 (3)	2.665	
Al9	6	1.84 (3)-2.03 (3)	2.577	
Al10	6	1.86 (3)–1.92 (3)	2.843	

formula $La_3Ti_5Al_{15}O_{37}$, without supporting elemental analyses. Mass balance demands an aluminous impurity should be present; comparing the ratios La:Ti:Al 1:2:9 = 3:6:27 in the reaction mixture and 3:5:15 in the product. Morris *et al.* (1994) found the material used in laboratory X-ray and synchrotron data collection contained rutile while neutron diffraction data were impurity free.

3.3.2. Structure problem. Rietveld refinement of La₃Ti₅Al₁₅O₃₇ resulted in good agreement between calculated and observed diffraction patterns, but a detailed inspection of the crystal structure of La₃Ti₅Al₁₅O₃₇ reveals several problematic structural segments (Table 2). Specifically, some titanium and aluminium cations are separated by 2.2–2.5 Å which is unreasonable, leading to unusually large coordination numbers. Unreasonably short distances (< 3.2 Å) also appear between La and Ti or La and Al. In addition, the O3 atom is surrounded by six high-valence cations (three Ti⁴⁺ and three Al³⁺) 1.67–2.05 Å distant.

3.3.3. Bond-valence sum calculations. Bond-valence sums (BVS; Brown, 1992) for LaTi₂Al₉O₁₉ (Tables 3 and 4) are close to the nominal atomic valences (AV) (+3, +4, +3 and -2 for Al, Ti, La and O), which is reflected in a global instability

Figure 6

SEI/BSI micrographs of etched cross section of the ceramic based on the compound $LaTi_2Al_9O_{19}$, sintered at 1723 K for 20 h.

Table 4 Bond-valence sums (BVS) for oxygen ions and O-Ti/Al and O-La distance ranges for the title compound (CN = coordination number).

Ovvgen	CN	Distance ranges $O_{Ti}(A)$	Distance ranges $O - I_2 (\mathring{A})$	BVS
Oxygen	CIV	$O = \Pi/AI(A)$	O = La(A)	DV3
O1	3	1.79 (3)-1.84 (3)	-	-1.803
O2	4	1.72 (2)-1.91 (2)	2.590 (22)-2.823 (20)	-2.018
O3	5	1.91 (3)-1.92 (3)	2.723 (21)-2.936 (20)	-1.774
O4	4	1.918 (21)-1.979 (19)	-	-1.615
O5	4	1.78 (3)-2.13 (2)	_	-1.876
O6	4	1.781 (19)-2.03 (3)	_	-1.749
O7	4	1.849 (14)-2.03 (3)	2.562 (15)	-1.942
O8	3	1.715 (17)-1.924 (17)	_	-2.015
O9	4	1.84 (2)-1.92 (2)	2.742 (21)	-2.051
O10	3	1.752 (22)-1.905 (21)	_	-2.142
O11	4	1.80 (2)-1.95 (3)	_	-1.925
O12	4	1.793 (17)-1.99 (3)	2.66 (3)	-1.740
O13	4	1.79 (3)-2.04 (2)	_	-1.904
O14	4	1.83 (3)-1.96 (2)	2.513 (21)	-1.838
O15	5	1.86 (3)-2.14 (3)	2.950 (21)	-1.889
O16	5	1.80 (3)-2.174 (15)	2.87 (3)-3.011 (17)	-1.708
O17	4	1.770 (15)-2.02 (3)	_	-1.876
O18	3	1.78 (3)-1.967 (18)	-	-1.822
O19	3	1.753 (21)-1.966 (22)	-	-2.095

Table 5

Bond-valence sums (BVS) and metal–oxygen distance ranges for $La_3 Ti_5 Al_{15} O_{37}$ (CN = coordination number).

Metal ion	CN	N Distance ranges M -O (Å)	
La1	11	2.52 (3)-2.94 (4)	2.346
La2	12	2.23 (4)-3.00 (4)	3.505
La3	12	2.60 (4)-2.94 (4)	2.404
Ti1	6	1.61 (5)-2.36 (5)	5.469
Ti2	6	1.70 (7)-2.26 (7)	4.254
Ti3	6	1.68 (8)-2.25 (8)	4.483
Ti4	6	1.79 (9)-2.19 (9)	4.392
Ti5	6	1.70 (8)-2.26 (9)	4.817
Al1	5	1.78 (5)-2.15 (7)	2.273
Al2	6	1.71 (5)-2.13 (5)	2.687
A13	4	1.63 (5)-1.74 (5)	3.275
Al4	6	1.60 (5)-2.13 (5)	3.173
A15	6	1.58 (5)-2.23 (5)	2.860
Al6	6	1.76 (6)-2.25 (6)	2.524
Al7	4	1.73 (5)-1.82 (5)	2.594
Al8	4	1.74 (6)-1.78 (5)	2.789
A19	5	1.77 (5)-2.15 (6)	2.383
Al10	6	1.79 (5)-2.10 (5)	2.691
Al11	6	1.78 (5)-2.13 (5)	2.846
Al12	4	1.6 (1)-1.75 (6)	3.201
Al13	5	1.67 (5)-2.17 (5)	2.374
Al14	5	1.52 (4)-2.18 (5)	2.834
Al15	4	1.71 (7)–1.96 (6)	2.440

index (g.i.i.; Salinas-Sanchez *et al.*, 1992) of 0.26 valence units (v.u.). The largest deviation is -0.55 v.u. for Al7, which is comparable to isostructural SrAl₈Ti₃O₁₉, where the g.i.i. is 0.22 v.u. and the largest discrepancy of -0.47 v.u. on Al3. (Complete bond-valence sum calculations for SrAl₈Ti₃O₁₉ can be found in the supplementary material – Tables S1 and S2.) These acceptable deviations from AV can be attributed to intrinsic strains present in complex ternary oxides, or to the less accurate determination of O-atom positions by X-ray diffraction compared with La, Ti and Al, and consequently the M-O distances are less accurate. On the other hand, the deviations of BVS from AV for La₃Ti₅Al₁₅O₃₇ are significantly

Table 6

Bond-valence sums (BVS) for selected oxygen ions that deviate the most from their expected atomic valences, together with O-Ti/Al and O-La distance ranges in La₃Ti₅Al₁₅O₃₇ (CN = coordination number).

		Distance ranges	Distance ranges	
Oxygen	CN	O-Ti/Al (Å)	O-La (Å)	BVS
O3	6	1.67 (4)-2.05 (9)	_	-4.393
01	4	1.60 (5)-1.96 (6)	_	-3.921
O20	4	1.73 (8)-2.08 (5)	2.23 (4)-2.65 (4)	-2.693
O6	5	1.71 (6)-2.26 (7)	2.84 (4)	-2.634
O7	4	1.58 (5)-2.13 (5)	-	-2.600
O25	3	1.71 (7)-2.10 (5)	2.58 (3)	-1.380
O2	4	1.72 (5)-2.36 (5)	2.78 (4)	-1.366
O17	3	1.77 (5)-1.92 (5)	2.75 (4)	-1.322
O10	5	2.22 (7)-2.24 (7)	2.71 (5)-2.94 (4)	-1.134
O23	2	1.81 (5)-1.98 (5)	-	-0.984

larger (Tables 5 and 6), which is also reflected in a very high g.i.i. of 0.64 v.u. Several atoms have unacceptably large deviations, *e.g.* Ti1, O1, O3 and O23 with discrepancies of +1.47, -1.92, -2.39 and +1.02 v.u. from nominal values. The O3 atom with three Ti⁺⁴ and three Al⁺³ cations in its first coordination sphere has an AV of -4.39 v.u. On the other hand, the O23 atom does not have enough cations in its neighborhood (only two Al⁺³), resulting in an AV of only -0.98 v.u. To conclude, BVS calculations are physically unacceptable for La₃Ti₅Al₁₅O₃₇.

3.3.4. The refinement procedure. Morris *et al.* (1994) report that soft constraints were needed to prevent chemically unreasonable metal–metal bond distances in $La_3Ti_5Al_{15}O_{37}$, but these constraints were omitted in the final refinement cycles. On the other hand, no restraints and/or constraints were necessary during the structure refinement of $LaTi_2Al_9O_{19}$ to arrive at a chemically and physically reasonable outcome. It is concluded that $La_3Ti_5Al_{15}O_{37}$ does not exist and material studied by Morris *et al.* (1994) was $LaTi_2Al_9O_{19}$. Additionally, $LaTi_2Al_9O_{19}$ is less complex with a significantly smaller number of atoms in its asymmetric unit (31 *versus* 60) and enables us to arrive at an equivalent fit to the data.

4. Conclusion

LaTi₂Al₉O₁₉ was found by Rietveld analysis of conventional X-ray powder diffraction data to be isostructural with SrAl₈Ti₃O₁₉. The structure consists of network of AlO₆ and TiO₆ octahedra linked by AlO₄ tetrahedra and 12-fold-coordinated La³⁺ ions. The bond-valence sum calculations confirm that the proposed structure complies with the rules of crystal chemistry, unlike the alternate description as La₃Ti₅Al₁₅O₃₇, which has an identical powder diffraction pattern and was synthesized as for LaTi₂Al₉O₁₉. On the basis of given arguments, we can conclude that La₃Ti₅Al₁₅O₃₇ does not exist and material studied by Morris *et al.* (1994) was LaTi₂Al₉O₁₉.

Financial support of the Ministry of Higher Education, Science and Technology of the Republic of Slovenia is gratefully acknowledged (grants P2-0091, P1-0175 and MR-29397).

References

- Ali, R., Izumi, F. & Yashima, M. (2006). J. Am. Ceram. Soc. 89, 3805–3811.
- Brown, I. D. (1992). Z. Kristallogr. 199, 255-272.
- Coelho, A. A. (2007). *TOPAS-Academic*, Version 4.1. Coelho Software, Brisbane, Australia.
- Dowty, E. (2005). ATOMS, Version 6.2. Shape Software, Kingsport, USA.
- Herbert, J. M. (1985). Ceramic Dielectrics and Capacitors, Electrocomponent Science Monographs, Vol. 6. New York: Gordon and Breach Science Publishers.
- International Centre for Diffraction Data (2009*a*). *PDF*-2, Release 1995. Newtown Square, PA, USA.
- International Centre for Diffraction Data (2009b). *PDF*-2, Release 2009. Newtown Square, PA, USA.
- Kuang, X., Allix, M. M. B., Claridge, J. B., Niu, H. J., Rosseinsky, M. J., Ibberson, R. M. & Iddles, D. M. (2006). J. Mater. Chem. 16, 1038– 1045.

- Morgan, P. E. D. (1984). Mater. Res. Bull. 19, 369-376.
- Morris, R. E., Owen, J. J., Stalick, J. K. & Cheetham, A. K. (1994). J. Solid State Chem. 111, 52–57.
- Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201–211.
- Škapin, S., Kolar, D. & Suvorov, D. (1993). J. Am. Ceram. Soc. 76, 2359–2362.
- Slater, P. R. & Irvine, J. T. S. (1999). J. Solid State Chem. 146, 437–438.
- Strunk, M. & Mueller-Buschbaum, H. (1993). J. Alloys Compd, 198, 101–104.
- Suvorov, D., Valant, M., Škapin, S. & Kolar, D. (1998). J. Mater. Sci. 33, 85–89.
- Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.
- Yoshioka, H. (1994). Kidorui, 24, 124-125.
- Zhang, Q. & McGinn, P. J. (2006). J. Am. Ceram. Soc. 89, 1687– 1693.